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ABSTRACT 

We show that for every orientable 2-manifold there is a finite set of triangu- 
lations from which all other triangulations can be generated by sequences of 
vertex splittings. 

1. Introduction 

One form of a well-known theorem of Steinitz [5] states that the triangu- 
lations of the 2-sphere can be generated from the complete graph on four 
vertices embedded in the 2-sphere, by a process called vertex splitting. Similar 
generation procedures have been found by Barnette [1] for the projective 
plane, generating the triangulations from two minimal triangulations; and by 
GrOnbaum and Duke [2], Rusnak [4] and Lavrenchenko [3] for the toms, 
generating the triangulations from a set of 22 minimal triangulations. In this 
paper we show that for every orientable 2-manifold there is a finite set of 
minimal triangulations from which all others can be generated by vertex 

splitting. 

2. Definitions 

By a 2-manifold we shall always mean a compact orientable 2-dimensional 

manifold. 
If e is an edge of a triangulation T of a 2-manifold we say that T' is obtained 

from T by edge shrinking if T' can be obtained from T by removing e and all 
edges meeting e, and replacing them by a vertex v which is joined to every 
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remaining vertex that was joined to a vertex ofe .  This process can most easily 

be visualized by imagining that the edge e is shrunk to the vertex v and any 

double edges produced are merged into single edges. We say that the edge e is 

shrinkable. 
If  T' is obtained from T by shrinking edge e to vertex v we also say that T is 

obtained from T' by splitting vertex v. 

By a 3-circuit in a triangulation we mean the union of three edges e~, e2 and e3 

such that their pairwise intersections are three distinct vertices. If  a 3-circuit 

does not bound a cell in M we say that it is a nonplanar 3-circuit, all other 3- 

circuits will be called planar 3-circuits. 

I f x  and y are two vertices of an edge e we shall denote e by xy. If x, y and z 

are vertices of a 3-circuit C we denote C by xyz. 

3. Minimal triangulations 

If every edge of a triangulation T of a 2-manifold M is not shrinkable we say 

that T is a minimal triangulation of M. Clearly, if an edge e belongs to a 

nonplanar 3-circuit then e is not shrinkable. Thus if each edge belongs to a 

nonplanar 3-circuit then T is minimal. We begin by showing that the converse 

is also true for all 2-manifolds except the sphere. 

LEMMA 1. I f T  is a minimal triangulation of  a manifold M, other than the 
sphere, then every edge of T lies on a nonplanar 3-circuit. 

PROOF. By a lemma of one of the authors [ 1 ], the edge e will be nonshrink- 

able if and only if it belongs to a 3-circuit that is not a triangle of  the 
triangulation, thus an edge that is nonshrinkable and does not belong to a 
nonplanar 3-circuit must belong to a planar 3-circuit that is not a triangle of T. 

In this case let C be a planar 3-circuit in M, that is not a triangle of T, but 

bounds a cell A, and let C be chosen to enclose a minimum number of  vertices 

of  T in the cell A. Let o be a vertex in A and not on C. No 3-circuit containing 

an edge e~ meeting o can have any edge outside A because then T would have 

double edges. But, since e~ is nonshrinkable, et must lie in a 3-circuit that is not 

a triangle of  T and lies in A, thus the minimality of  C is violated. [] 

In the main theorem we will need to put a bound on the size of  sets of 

homotopically different simple circuits in triangulations of orientable mani- 

folds. This will be done in the following lemmas and Theorem 1. Let M b e  a 2- 

manifold of  genus g, and let { e t , . . . ,  e~r} be homotopically non-trivial closed 

curves at a base point o in M. Assume that the ei satisfy the hypotheses 
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(H,) e~ ¢q ej = {o}, for i ~:j, 
(H2) ei is not homotopic to ej, for i ~ j ,  

(H3) the set {e;} is maximal with respect to Hi and H2. 

The curves {e~) define a graph on M with regions (f~ . . . .  , f  r ) ,  edges 

{el, . . . ,  ee}, and one vertex o. 

LEMMA 2. I f  (HI)-(H3) a r e  satisfied then each edge ei belongs to the 

boundary o f  exactly two faces. 

PROOF. It is obvious that each edge belongs to the boundary of at most two 

faces. We must show that ei cannot be in the boundary of only one face. If M 

has genus g -- 0 or g -- l, then the lemma is obvious. Assume g > 1 and that ei, 

belongs to the boundary of exactly one face f~. The boundary ~ 1  is a union ot 

edges, 

~¢t~ = eit U e~2 U . . .  U e~o U ek, U ' ' '  U ek,, 

where each of  the edges eij intersects only the boundary off~, and each of the 

edges ek, intersects the boundary of  exactly two faces. Since M is orientable 

each of the edges ek, has a closed tubular neighborhood Nj in M - f~, which is 

homeomorphic to ek, × [0, 1]. Then M ' =  f~ U (Uj=l  Nj) is a compact mani- 
fold with r boundary components e;,j -- ek~ × ( 1 }, for j = 1 , . . . ,  r. Assuming 
r > 1, the manifold M'  has genus 8 < g. Let h~rbe the closed manifold of  genus 

g, obtained from M'  by capping each of  the boundary curves e;,~. The family of 
curves ei,, ei2 . . . .  , e~, on M satisfy (i) and (ii), and by induction on the genus the 

family cannot be maximal. Therefore there exists a circuit ~, at o such that 

y - o c f~, and the family ei,, e~2 . . . .  , e~,, ~, satisfy (i) and (ii). We see that ~, is 

not homotopic to any of  the curves ekj, since this would imply 7 is nullhomoto- 

pic in .Q. The lemma will be proved if we can show that ~, is not homotopic in 

M t o  any of the curves ei,,j = 1, 2 , . . . ,  q. This will be accomplished by means 

of  the Mayer-Vietoris homology sequence of  the pair U - - f t ,  V = M -  f~. 

This exact sequence is defined by 

(1) 
. . . .  H~(U U V) zx H , ( U  N V) ~" , H , (U)  • H , ( V )  

~" , HI (U U V) /X , Ho(U f3 V). 

Recall that the homomorphisms g . ,  ¢ .  are induced by the chain maps 
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~,: c . ( u  n r 3 - - -  G ( u )  • G ( v 3 ,  

~,(c)  = (c ,  - c) ,  

¢: G(u)  • G(v3--- G ( u  u v3, 

~(c  I , c 2) = c ~ + c 2. 

In this case U U V = M, and U N V = ,~¢/~t, so the exact sequence becomes 

. . . .  H2(M) ~ H,(Of) ~", H, ( f )  @ Ht(M - f )  

(2) ¢' ,  H I ( M ) ~  Ho(Of) . . . .  . 

Assume that ~ is homotopic in M to e~,. Then [~,] = [eJ  in H~(M), where [ ] 

denotes the homology class which is the image under the Hurewicz homomor- 

phism. Therefore 0.([~ ' ] , -  [eJ)---0, so by exactness ([~,],- [e j )  is in the 

image of ~ , .  The space 0 f  is a wedge of  circles, therefore the group H~(Of) is 

free Abelian, with generators {[e~,] . . . .  , [e~,], [ek,] . . . .  , [ek,]}. Under the inclu- 
sion map e~,---f, the image of [e,,] is a generator, therefore ([7], - [e~,]) cannot 

belong to the image of ~ , .  [] 

LEMMA 3. If(HI)-(H3) are satisfied then each face f has boundary contain- 
ing at least 3 edges. 

PROOF. Assume ~ l  contains exactly 1 edge, ~ l  = el. By the argument in 

the previous lemma the closure f is a compact surface with 1 boundary 

component, and with genus g~ satisfying 0 _-< g~ < g. If gl = 0 then f~ is 
homeomorphic to a disc D E. In this case, e~ is nullhomotopic in f ,  hence it is 
nullhomotopic in M, contradicting the hypothesis. Ifgl > 0, there is a simple 

closed curve ~, at o, such that ~, - o c f~, and Y is not homotopic to e~ i n f .  We 

will show that 7 cannot be homotopic in M to any of the e~, 1 _-< i _-< E. 

As in the previous lemma, we consider the Mayer-Vietoris sequence of the 

pair U = f ,  V = M - f~. In this case H~(U N V) is infinite cyclic with genera- 

tor levi, and the image of [ed is one of the generators of H~(f). As in the 

previous case ([7], - [e;]) cannot belong to the image of ~/.. 

Now assume that ~ contains exactly two edges, o ~  = el U e 2. By the 

previous lemma each of the curves ej, for j = 1, 2, has a closed, tubular 

neighborhood in M, homeomorphic to ej X [ - l, 1], with ej = ej X {0}. Again 

by the previous lemma each edge belongs to exactly two faces so we can assume 

that ( e j × ( 0 , 1 ] ) C M - f ,  and that ( e l × ( 0 , 1 ] ) N ( e 2 X ( 0 , 1 ] ) = Z ~ .  It 

follows that 
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.~  = f  u (e~ X [0, ll) u (e2 X [0, 11) 

is a compact manifold of genus g < g, having two boundary components 

el = el × { 1 }, and ~2 = e2 X { 1 }. If g = 0, then d~ --~ e2 in h~t, which implies 

el --~ e2 in f ,  and hence also in M. I fg  > 0, then an algebraic proof based on the 
Mayer-Vietoris sequence, analogous to the previous case, contradicts the 

maximality of the edge set. [] 

THEOREM 1. Let M be a 2-manifold o f  genus g., and let ( e b . . . ,  ee} be 
homotopically non-trivial closed curves at a base point o in M. Assume that the e i 

satisfy hypotheses (H0-(H3). Then 

(3) E < 6g - 3. 

PROOF. AS previously stated, the curves {ei} define a graph G on M with 

regions {fl . . . . .  fe}, edges (el . . . .  , eE}, and one vertex o. From Eulers 

inequality 

(4) 1 - E + F ~ 2 - 2 g .  

The proof then follows by the usual counting arguments. In fact, by Lemma 2 

we have 2E > 3F, which together with (4), implies E < 6g - 3. [] 

LEMMA 4. I f  F is a triangle o f  a triangulation T o f  an orientable 2-manifold 
M, then there is a bound depending only on the genus o f  M, on the number o] 
homotopically different 3-circuits meeting any given vertex o o fF.  

PROOF. Any two 3-circuits meeting o will meet just at o or on an edge 
containing o. Let S be a set of  pairwise nonhomotopic 3-circuits through o. If 

all circuits in S meet only at o then we are done by Theorem 1. If some of them 

intersect on edges we contract those edges to the vertex o. Some of the 3- 

circuits now become 2-circuits, but they are still pairwise nonhomotopic and 

now Theorem 1 applies. [] 

If C 1 and C2 are two homotopic 3-circuits in a triangulation T of a 

2-manifold M then Cl U C2 will bound one of three types of subset of  M. If 

C1 N C2 = ~ then Cl U C2 bounds an annulus. If  Cl O C2 is a vertex then 

C1 U C2 bounds a cell with two boundary points identified and if Cl O C2 is an 

edge e then C~ U C2 bounds a cell A together with the edge e meeting A only at 

its endpoints. Any of these three types of sets will be called H-sets for C~ and 

G. 
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The following lemma will be used to establish a natural ordering on any 

finite set of  pairwise homotopic 3-circuits. 

LEMMA 5. I f  C = { C], . . . , Cn } is a set o f  pairwise homotopic 3-circuits in a 
triangulation o f  a 2-manifold M then there exists an H-set A for a pair o f  circuits 
C~ and Cj such that all other circuits in C lie in A. 

PROOF. Our proof is by induction on n. The theorem is obvious if n -- 2. If 

we have a set o fk  circuits we consider an H-set A~ for C~ and C2. If  not all of  the 

remaining circuits lie in A 1 w e  contract A 1 to the circuit C~. By induction there 

is an H-set A 2 f o r  C l and the circuits not in A1. If we now apply the inverse of 

our contraction we have an H-set containing all k 3-circuits. [] 

We now can describe a natural ordering of any finite set { C~ . . . .  , Cn } of 
pairwise homotopic 3-circuits in a triangulation T of a 2-manifold M. 

Let A be an H-set as generated by Lemma 5. We imbed A in the plane and 

define Ci < Cj if and only if Ci has a vertex inside Cj. This is clearly a linear 

ordering on { CI . . . . .  C, }. 

LEMMA 6. I f  e is an edge in a triangulation T o f  a 2-manifold M and i f  e lies 
on four distinct nonplanar 3-circuits, all homotopic to each other, then T has a 

shrinkable edge. 

PROOF. We order the set of  3-circuits homotopic to C. Let C] . . . .  , C4 be 
four consecutive circuits in this ordering. Let e = xy  and let Fbe  a triangle of 7 

whose interior lies between C2 and C3, and meets x. Let el = x~x2 be the edge ot 
F missing x. Now suppose el is not shrinkable. Then e~ belongs to a nonplanar 

3-circuit X~XzX3 or in a planar 3-circuit that is not a triangle of T. In the latter 
case the argument in Lemma 1 shows that Thas a shrinkable edge. But since Xl 

and x2 lie in A and miss the boundary of A, x3 lies in A and xtx2x3 is planar. 
[] 

LEMMA 7. I f  o is a vertex in a triangulation T o f  a 2-manifold M and i f  there 
are four distinct nonplanar 3-circuits, all homotopic to each other and meeting 
pairwise only at o then T has a shrinkable edge. 

PROOF. The proof is essentially the same as the proof of  Lemma 6. [] 

LEMMA 8. Let C be a nonplanar 3-circuit in a minimal triangulation T o f  a 

2-manifold M.  I f  there are 28 3-circuits homotopic to C then there exist four 

pairwise disjoint 3-circuits homotopic to C. 
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PROOF. As in the previous lemma, we order all of  the 3-circuits homotopic 

to C. Let C1, . . . ,  C28 be the first 28 of them. 
If C2 meets C1 on an edge el, then C2 . . . .  , C28. do not contain the other two 

edges of Ca. Furthermore, among Ca and C4 is a circuit that does not contain et 

for otherwise we may apply Lemma 6 and get a shrinkable edge. It follows that 

among Ca . . . .  , C4 are two circuits Ca and Ci having no edges and at most one 

vertex 01 in common. 
Similarly, among C; . . . .  , Ci ÷3 is a circuit Cj meeting C,. on at most one 

vertex, and among C j , . . . ,  Cj÷3 is a circuit Ck meeting Cj on at most one 

vertex. If Ca, Ci, Cj and Ck all meet at 01 then we can apply Lemma 7 and get a 

shrinkable edge, thus one of C~, Cj and Ck misses Ci. 

We now know that among C2 , . . . ,  C~0 we have a circuit Cr missing Ca. 

Similarly among Cr÷~ . . . . .  Cr÷9 is a circuit Cs missing Cr (and thus also 

missing CO, and among Cs ÷~ . . . .  , Cs ÷9 is a circuit Ct missing Cs. Thus among 

Ca,. • . ,  C2s are four pairwise disjoint 3-circuits. [] 

LEMMA 9. I f  C is a nonplanar 3-circuit in a minimal triangulation T of  a 2- 
manifold M, then no more than 27 3-circuits o f T  are homotopic to C. 

PROOF. Suppose 28 such circuits exist. We order the set S of  all 3-circuits 

homotopic to Cin the usual way and let Ca, C2, C3, C4 be the first four 3-circuits 

in a maximal collection of pairwise disjoint 3-circuits, as guaranteed by 

Lemma 8. 

Case I. Some circuit B E S lies between C2 and C3. Then B shares a vertex 

or edge with C2 or C3. Suppose, without loss of generality B meets C2. We may 

suppose that B and C2 are chosen such that they are consecutive in the ordering 

of  S. Let x be a vertex on both B and C2. Let F be a face of T meeting x and 
whose interior lies between C2 and B. Let e be an edge of  F missing x. 

Since Tis minimal, e lies on a nonplanar 3-circuit B'. The circuit B' must lie 

in the annulus bounded by Cl and C4 because the third vertex of  the circuit 

must lie between two of C1 , . . . ,  C4. Since B' is nonplanar and lies in an 

annulus it is homotopic to one of  the bounding circuits of  the annulus and thus 

is homotopic to C. This contradicts the fact that B and C2 were consecutive. 

Thus e is shrinkable, a contradiction. 

Case H. No such circuit as B exists. Then C2 and C3 are consecutive in S. 

We choose any edge e lying in the annulus bounded by C2 and C3, but not on 
the boundary of this annulus. The argument in Case I shows that e is 

shrinkable. [] 
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THEOREM 2. The orientable 2-manifolds of any genus have finitely many 
minimal triangulations. 

PROOF. Let T be a minimal triangulation of a manifold M. If g = 0 the 
theorem is well known to be true, thus we assume g > 0. Now, every edge of ~r 

belongs to a nonplanar 3-circuit. 
Let C be a nonplanar 3-circuit in T. We cut M along C producing either a 

single manifold with a boundary consisting of two circuits or two manifolds 
with boundary, each with one bounding circuit. We span each of these 
bounding circuits by cells producing one or two manifolds of lower genus. Let 
M~ be one manifold thus produced (if the other exists let it be called M2). From 
the triangulation T~ of M~ we produce a minimal triangulation by shrinking 
edges. We shall find a bound on the number of shrinkings necessary to do this. 

Every edge of T~ lies in a nonplanar 3-circuit in T, thus if it does not lie in a 
nonplanar 3-circuit in /'1 it either lies in a nonplanar 3-circuit of T that is 
planar in 7"1 (and thus is homotopic to C) or it lies in a nonplanar 3-circuit that 
does not exist in T~ because the circuit was separated at a vertex when C was 
cut. Such circuits must therefore meet a vertex of C. 

In the first case, by Lemma 9, there are at most 27 such 3-circuits homotopic 
to C. Thus there are at most 81 shrinkable edges of TI on such circuits. 

In the second case, by Theorem 1 there is a bound K, depending only on the 
genus of M, on the number of homotopically different 3-circuits meeting each 
vertex of T. There can thus be at most 27K nonplanar 3-circuits meeting each 
vertex of C in M by Lemma 9, and thus at most 81K nonplanar 3-circuits 

destroyed by cutting along C. 
We now know that at most 243K + 81 edges fail to lie on nonplanar 

3-circuits in T. Since shrinking an edge does not change the homotopy type of 
a circuit, if an edge lies on a nonplanar 3-circuit before a shrinking, it does so 
after the shrinking. Thus we reduce T1 to a minimal triangulation of M~ with at 
most 243K + 81 edge shrinkings. 

We finish our proof by proceeding by induction. Our theorem is true when 
the genus is 0. By induction the theorem is true for MI, thus there are finitely 
many minimal triangulations of My By the above argument there are finitely 
many possible combinatorial types for the triangulation T~ because it is 
obtained by at most 243K + 81 vertex splittings to the minimal triangulations 
of Tv Similarly the triangulation T2 of M2, if it exists, has finitely many 

combinatorial types. 
Finally, there are only finitely many ways of identifying two triangles of T~, 
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or of  gluing a triangle of T~ to a triangle of  T2, thus there are finitely many 
minimal triangulations of M. [] 
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